Renal Regenerative Potential of Different Extracellular Vesicle Populations Derived from Bone Marrow Mesenchymal Stromal Cells
نویسندگان
چکیده
Extracellular vesicles (EVs) derived from human bone marrow mesenchymal stromal cells (MSCs) promote the regeneration of kidneys in different animal models of acute kidney injury (AKI) in a manner comparable with the cells of origin. However, due to the heterogeneity observed in the EVs isolated from MSCs, it is unclear which population is responsible for the proregenerative effects. We therefore evaluated the effect of various EV populations separated by differential ultracentrifugation (10K population enriched with microvesicles and 100K population enriched with exosomes) on AKI recovery. Only the exosomal-enriched population induced an improvement of renal function and morphology comparable with that of the total EV population. Interestingly, the 100K EVs exerted a proproliferative effect on murine tubular epithelial cells, both in vitro and in vivo. Analysis of the molecular content from the different EV populations revealed a distinct profile. The 100K population, for instance, was enriched in specific mRNAs (CCNB1, CDK8, CDC6) reported to influence cell cycle entry and progression; miRNAs involved in regulating proliferative/antiapoptotic pathways and growth factors (hepatocyte growth factor and insulin-like growth factor-1) that could explain the effect of renal tubular cell proliferation. On the other hand, the EV population enriched in microvesicles (10K) was unable to induce renal regeneration and had a molecular profile with lower expression of proproliferative molecules. In conclusion, the different molecular composition of exosome- and microvesicle-enriched populations may explain the regenerative effect of EVs observed in AKI.
منابع مشابه
Comparative analysis of the Gene expression profile of Chemokine Receptors between Adipose-derived and Bone marrow-derived Mesenchymal Stem Cells
Introduction: Mesenchymal stem cells (MSCs) hold great promise in the field of regenerative medicine.Although originally isolated from bone marrow, MSCs have since been obtained from a variety of adult and neonatal tissues including the adipose tissue. Stemness and multipotential features of Mesenchymal Stem Cells (MSC) has been highlighted in many studies but there are many dark aspects in ex...
متن کاملMesenchymal Stromal Cells Epithelial Transition Induced by Renal Tubular Cells-Derived Extracellular Vesicles
Mesenchymal-epithelial interactions play an important role in renal tubular morphogenesis and in maintaining the structure of the kidney. The aim of this study was to investigate whether extracellular vesicles (EVs) produced by human renal proximal tubular epithelial cells (RPTECs) may induce mesenchymal-epithelial transition of bone marrow-derived mesenchymal stromal cells (MSCs). To test this...
متن کاملExtracellular Vesicles in Regenerative Medicine, a Brief Review
Extracellular vesicles were initially known as cellular waste carriers, while recent studies demonstrate that extracellular vesicles play important biological roles in all aspects of life-from single cells to mammalians. Their pathophysiological roles in some diseases like cancer are being decoded. Extracellular vesicles are divided into some classes and there are different strategies to isolat...
متن کاملTrophic Actions of Bone Marrow-Derived Mesenchymal Stromal Cells for Muscle Repair/Regeneration
Bone marrow-derived mesenchymal stromal cells (BM-MSCs) represent the leading candidate cell in tissue engineering and regenerative medicine. These cells can be easily isolated, expanded in vitro and are capable of providing significant functional benefits after implantation in the damaged muscle tissues. Despite their plasticity, the participation of BM-MSCs to new muscle fiber formation is co...
متن کاملPotential Application of Cord Blood-Derived Stromal Cells in Cellular Therapy and Regenerative Medicine
Neonatal stromal cells from umbilical cord blood (CB) are promising alternatives to bone marrow- (BM-) derived multipotent stromal cells (MSCs). In comparison to BM-MSC, the less mature CB-derived stromal cells have been described as a cell population with higher differentiation and proliferation potential that might be of potential interest for clinical application in regenerative medicine. Re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 23 شماره
صفحات -
تاریخ انتشار 2017